If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+64x-19.2=0
a = 1; b = 64; c = -19.2;
Δ = b2-4ac
Δ = 642-4·1·(-19.2)
Δ = 4172.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-\sqrt{4172.8}}{2*1}=\frac{-64-\sqrt{4172.8}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+\sqrt{4172.8}}{2*1}=\frac{-64+\sqrt{4172.8}}{2} $
| 6x+6+x+5=-30 | | 12x+6-4x-2=-4 | | 20-8-3x-5=-30 | | -14=7(x+4) | | X-15=2x-34 | | .92=(1-x) | | -7+24=m-6 | | y-7=-1+8 | | 3(x)+5=44 | | -6(n+2)+14=-4n-6 | | -3c+4=-14 | | 6a+27=-3 | | 3(5c+1)-11=13c+2 | | 36+5y-11=16y-10-4y | | x+18+4x=37-4x-44 | | -1.9x-2=-1.7x+3 | | 2n+2.2=4.4 | | -47+23=-5x+11x | | 9-21=2z | | 8w-17w=45 | | -2x+5=3x-15 | | 7p-7+33=90 | | 50=0.8t^2 | | (4x-13)=(3x+7) | | 15+(3x+2)=4x | | 5+10x^2=645 | | 56=x^2+5x+6 | | 2k-8k=-6 | | -2(x-4)^(4/5)=81 | | -2(x-4)^4/5=81 | | a/0.35=5.3 | | 11-2x=31-7x+x |